Entropy

Let $\alpha = \{A_1, \ldots, A_r\}, \xi = \{C_1, \ldots, C_r\}$ and $\eta = \{D_1, \ldots, D_r\}$ be finite partitions of (X, \mathcal{A}, μ) and let T be a measure preserving transformation. That is $\mu(T^{-1}H) = \mu(H), \forall H \in \mathcal{A}$.

A. Definitions:

- $\alpha \vee \xi := \{A_i \cap C_j : 1 \leq i, j \leq r\}$ is the join of α, ξ . $\phi(t) := -t \log t$, $I(\xi)(x) := -\sum_{C \in \mathcal{E}} \mathbb{1}_C(x) \cdot \log(\mu(C))$.

$$H(\xi) := \int I(\xi)(x) d\mu(x) = \sum_{i=1}^{r} \phi(\mu(C_i)).$$

- $H(\xi|\eta) := \sum_{i=1}^r \mu(D_j) \cdot H(\xi_{D_j}) = \sum_{i,j} \mu(C_i \cap D_j) \log \frac{\mu(C_i \cap D_j)}{\mu(D_j)}$, where ξ_{D_j} is the partition generated by ξ on the set D_i and $H(\xi_{D_i}) := H_{\mu(\cdot|D_i)}(\xi_{D_i})$.
- $I(\widehat{\xi}|\mathcal{B}) = -\sum_{i=1}^{r} \mathbb{1}_{C_i} \log \mu(C_i|\mathcal{B})$, where \mathcal{B} is a σ -algebra. $h(T, \eta) := \frac{1}{n} H\left(\eta \vee T^{-1} \eta \vee \cdots \vee T^{-(n-1)} \eta\right)$. Actually $H\left(\eta \vee T^{-1} \eta \vee \cdots \vee T^{-(n-1)} \eta\right) \downarrow h(T, \eta)$ also
- $h(T) := \sup \{h(t, \eta) : \eta \text{ is a finite partition } \}.$

B. Elementary properties of the entropy of partitions

- (I): $H(\xi \vee \eta) = H(\xi | \eta) + H(\eta)$
- (II): $H(\xi|\eta) = 0$ if and only if η is a refinement of ξ (we denote it $\xi \leq \eta$).
- (III): $H(\xi \vee \eta) \geq H(\eta)$.
- (IV): Let $\widehat{\xi}$ be a finite sub- σ -algebra of \mathcal{A} with $\xi = \{C_1, \dots, C_r\}$. Further, let \mathcal{F} be an arbitrary (not necessarily finite) sub- σ -algebra of \mathcal{A}

(1)
$$H(\widehat{\xi}|\mathcal{F}) = \int -\sum_{i=1}^{r} \mathbb{E}(\mathbb{1}_{C_i}|\mathcal{F}) \log \mathbb{E}(\mathbb{1}_{C_i}|\mathcal{F}) d\mu =$$
$$= \int -\sum_{i=1}^{r} \mathbb{1}_{C_i} \log \mu(C_i|\mathcal{F}) d\mu = \int I(\widehat{\xi}|\mathcal{F}) d\mu.$$

(V):
$$H\left(\bigvee_{i=0}^{n-1} T^{-i}\xi\right) = H(\xi) + \sum_{j=1}^{n-1} H\left(\xi | \bigvee_{i=1}^{j} T^{-i}\xi\right)$$
.

C. Some further elementary properties of the entropy

- (a): $H(\alpha \vee \xi | \eta) = H(\alpha | \eta) + H(\xi | \alpha \vee \eta)$.
- **(b):** If $\alpha \leq \xi$ then $H(\alpha|\eta) \leq H(\xi|\eta)$.
- (c): If $\alpha \leq \eta$ then $H(\xi|\alpha) \geq H(\xi|\eta)$.
- (d): $H(\xi) \ge H(\xi|\eta)$.
- (e): $H(\alpha \vee \xi | \eta) \leq H(\alpha | \eta) + H(\xi | \eta)$.
- (f): $H(\alpha \vee \xi) \leq H(\alpha) + H(\xi)$.
- (g): $H(\xi|\eta) = H(\xi)$ iff ξ and η are independent: $\mu(C_i \cap D_i) = \mu(C_i)\mu(D_i)$.
- (h): $H(T^{-1}\xi|T^{-1}\eta) = H(\xi|\eta)$.
- (i): $H(T^{-1}\xi) = H(\xi)$.

D. Elementary properties of the entropy of a transformation

- (i): $h(T, \xi) \le H(\xi)$.
- (ii): $h(T, \xi \vee \eta) \leq h(T, \xi) + h(T, \eta)$.
- (iii): If $\eta \leq \xi$ then $h(T, \eta) \leq h(T, \xi)$.
- (iv): $h(T, \xi) \le h(T, \eta) + H(\xi | \eta)$.
- (v): $h(T, T^{-1}\xi) = h(T, \xi)$.
- (vi): $h(T,\xi) = h(T, \bigvee_{i=0}^{k-1} T^{-i} \xi)$ for all $k \ge 1$
- (vii): If T is invertible and $k \geq 1$ then

$$h(T,\xi) = h\left(T, \bigvee_{i=-k}^{k} T^{i}\xi\right).$$

1

(viii):
$$h(T^k) = kh(T)$$
 for $k \ge 0$

(ix):
$$h^{-1}(T) = h(T)$$
 if T is invertible.

E. Further important properties of the entropy of a transformation

0: Let ν_i be probability measures on (X, \mathcal{A}) and $\mathbf{p} = (p_1, \dots, p_\ell)$ be an arbitrary probability vector. That is $\sum_{i=1}^{\ell} p_i = 1$ and $p_i \ge 0$ for all i. We define $\nu := \sum_{i=1}^{\ell} p_i \nu_i$. Then $H_{\nu}(\xi) \ge \sum_{j=1}^{\ell} p_j \cdot H_{\nu_j}(\xi)$.

$$\mathbf{1:}\ h(T,\xi) = \lim_{n \to \infty} H\left(\widehat{\xi} | \bigvee_{i=1}^n T^{-i} \widehat{\xi}\right) = H\left(\widehat{\xi} | \bigvee_{i=1}^\infty T^{-i} \widehat{\xi}\right).$$

2: $h(T) = 0 \iff \forall \xi \text{ finite partition, } \widehat{\xi} \subset \bigvee_{i=1}^{\infty} T^{-i} \widehat{\xi}$ 3: $h(T) = 0 \implies \mathcal{A} = T^{-1} \mathcal{A} \implies T \text{ is invertible mod } 0.$

4:
$$H(\widehat{\xi}|\mathcal{B}) = 0 \iff \widehat{\xi} \stackrel{\circ}{\subset} \mathcal{B}$$

5: For i=1,2 let $(X_i,\mathcal{A}_i,\mu_i)$ be probability spaces and let T_i be measure preserving on $(X_i,\mathcal{A}_i,\mu_i)$. Then $h(T_1 \times T_2) = h(T_1) + h(T_2)$.

6: The entropy of both of the one-sided and two sided Bernoulli Scheme $BS(p_1,\ldots,p_r)$ is $-\sum_{i=1}^r p_i \log p_i$.

7: Theorem Ornstein: Two Bernoulli Schemes of the same entropy are isomorphic.

8: The entropy of both of the one-sided and two-sided Markov shifts (\mathbf{p}, P) is $-\sum_{i=1}^{\infty} p_i p_{i,j} \log p_{i,j}$.

9: Theorem (Kolomogorov, Sinai) If \mathcal{B} is a finite sub-algebra of \mathcal{A} and if $\bigvee_{i=0}^{\infty} \mathcal{B} \stackrel{\circ}{=} \mathcal{A}$ then h(T) = 0 $h(T,\mathcal{B}).$

10: Let T be invertible and we assume that $\exists \mathcal{B} \subset \mathcal{A}$ finite sub-algebra such that $\bigvee_{i=0}^{\infty} T^{-i}\mathcal{B} \stackrel{\circ}{=} \mathcal{A}$. Then h(T) = 0.

11: Theorem (Shannon-McMillian-Breiman) Assume that μ is ergodic and ξ is a finite or countable partition with $H(\xi) < \infty$. Let $\xi_k^n := \bigvee_{i=k}^n T^{-i}\xi$ and $\xi_k^n(x)$ be the element of ξ_k^n which contains x. Then

(2)
$$I(\xi|\xi_1^n) \to I(\xi|\xi_1^\infty)$$
 a.e. and in L^1 , and $\frac{1}{n}I(\xi_0^{n-1}) \to \mathbb{E}[f|\mathcal{I}]$ a.e. and in L^1 ,

where $f := I(\xi | \xi_1^n)$ and $\mathcal{I} := \{ H \in \mathcal{A} : T^{-1}H \stackrel{\circ}{=} H \}$. The sequence of functions $h_n(x) := -\frac{1}{n} \log \mu(\xi_0^n(x))$ is convergent almost everywhere and in L^1 . The limit is the constant function $h(T,\xi)$ if μ is ergodic.

12: Assume that for i=1,2 the map T_i is a measure preserving transformation of the Lebesgue space $(X_i, \mathcal{A}_i, \mu_i)$ and $\pi: X_1 \to X_2$ is a measure preserving map such that the following diagram commutes:

$$(X_1, \mathcal{A}_1, \mu_1) \xrightarrow{T_1} (X_1, \mathcal{A}_1, \mu_1)$$

$$\uparrow \qquad \qquad \downarrow \pi$$

$$(X_2, \mathcal{A}_2, \mu_2) \xrightarrow{T_2} (X_2, \mathcal{A}_2, \mu_2)$$

Then we say that T_2 is a factor of T_1 . In this case $h(T_1) \ge h(T_2)$.

13: Fix an $r \in \mathbb{N}$. Then

(3)
$$\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } \forall \xi := \{C_1, \dots, C_r\}, \eta := \{D_1, \dots, D_r\} \text{ if } \rho(\xi, \eta) < \delta \text{ then } d(\xi, \eta) < \varepsilon,$$
 where

(4)
$$\rho(\xi, \eta) := \sum_{i=1}^{r} \mu(C_i \Delta D_i), \quad d(\xi, \eta) := H(\xi | \eta) + H(\eta | \xi).$$

By (**D**. iv): $|h(T,\xi) - h(T,\eta)| \le d(\xi,\eta)$. So,

(5)
$$\forall \varepsilon > 0 \quad \exists \delta > 0, \text{ s.t. } \rho(\xi, \eta) < \delta \Longrightarrow |h(T, \xi) - h(T, \eta)| < \varepsilon.$$

14: Let A be a non-negative $N \times N$ irreducible matrix and $\lambda, \mathbf{u}, \mathbf{v}$ as in the Perron-Frobenius Theorem. (λ is the dominant eigenvalue and $\mathbf{u}^T \cdot A = \lambda \mathbf{u}^T$, $A \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$ and $\sum u_i v_i = 1$.) We define:

$$(6) p_i := u_i v_i p_{ij} := \frac{a_{ij} v_j}{\lambda v_i}.$$

Then $P = (p_{ij})$ is a stochastic matrix and for $\mathbf{p} := (p_1, \dots, p_N)$ we have $\mathbf{p}^T \cdot P = \mathbf{p}^T$. $\mu([i_1,\ldots,i_n]):=p_{i_1}p_{i_1i_2}\cdots p_{i_{n-2}i_{n-1}}$. That is μ is the stationary distribution corresponding to the stochastic matrix P. We say that μ is the Parry measure for the topological Markov chain determined by the matrix A. Then

(7)
$$h_{\mu}(\sigma) = \log \lambda,$$

and μ is the only measure with maximal entropy (which is $\log \lambda$).